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Of course animals are creative, especially if one defines “creative”
advantageously. That is easy to do, given that the word comes from the
vernacular. That gives us a great deal of latitude in constructing our
definition.

My favorite definition of creative, which works pretty well in most
natural uses of the term but is by no means definitive, is as follows:
“Creative” is how we label someone’s behavior or the product of that
behavior if that behavior or its product is both new to some degree and
also of value to a pertinent community. Sometimes, if someone behaves
frequently and consistently in this way, we might even label the
individual him- or herself “creative.”
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So if a child builds the same new and amazing block structure over
and over again, we might say she was creative the first time she built
it but probably not the second, and if the very first time she built it,
she was simply copying someone else, again, it is unlikely we would label
her behavior or the structure creative. If the structure is simple and
boring, the language of creativity also won’t usually be applied. Notable
people in that child’s community—a teacher, a parent, or a grandparent,
typically—have to recognize the structure as intricate or interesting or
esthetically pleasing. In other words, they have to value it before they will
call it creative—generally speaking, the younger the child, the more
relaxed the requirement.

The same criteria are generally applied to adults, even to accom-
plished adults such as artists and inventors. The main difference
between judgments made regarding the creativeness of children and
the creativeness of adults is the nature of the community. Mom or Dad
have all the authority it takes to pronounce their child’s artwork crea-
tive (but perhaps not the artwork of another child), whereas an adult
writer or sculptor or inventor is at the mercy of a larger, more discern-
ing panel of judges: critics, editors, art collectors, and so on—a panel
that might even change from time to time, meaning that something that
is judged creative by one community or in one generation might not be
by another community or the next generation.

Novelty is still critical, however, no matter how generous the judges.
No matter how squiggly Jackson Pollack’s squiggles, if a dozen other
artists had adopted his style before he did, his work would probably
have been ignored—dismissed, perhaps, as copycat art, even if Pollack
knew nothing of those other artists. So novelty is critical, and so is the
community. In fact, one of the oddest things about the language of crea-
tivity is that one cannot credibly apply it to oneself. “Look, everybody—
see how creative I am” does not impress and might even bring ridicule.

With these elements in mind, are animals creative? In this brief essay
I will not only show that all animals are creative to some extent, I will
also offer what I believe is an evolutionarily sound model for under-
standing why both animals and people behave creatively. Specifically, I
will offer evidence that the same neural mechanisms, which can be
expressed in formal terms using a theory I introduced in the 1980s called
“generativity theory” (Epstein, 1985a, 1990, 1991, 1996a, 1999, 2014)—
underlie the emergence of novel behavior in both animals and people.

THOSE AMAZING ANIMALS

In 1984, my colleagues and I reported that pigeons with appropriate
training could solve Köhler’s (1925) classic box-and-banana problem in
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a human-like, or, if you prefer, chimp-like manner, when faced with the
problem for the first time. Like bright children faced with similar pro-
blems, our pigeons first looked confused for a while and then fairly
suddenly solved the problem, pushing a box under a toy banana, climb-
ing onto the box, and pecking the banana (Epstein, Kirshnit, Lanza, &
Rubin, 1984). This kind of performance is not only novel—we could
guarantee that, after all, by controlling and monitoring the behavioral
histories of our pigeons—it also has obvious value. With animals, there
is no community of peers available to judge a performance creative, but
there is an obvious situation in which novel behavior demonstrates
value: that is, when it solves a problem.

People have witnessed novel problem-solving behavior in animals
for as long as they have been observing them, no doubt. Our family
dog, Tiny Bryan, drove us all crazy for nearly a year by finding new
ways to get through whatever gate we installed to keep her (yes,
“Bryan” was female) out of our dining room, where she often left
mementos on the carpet. Even more remarkably, none of us ever saw
her get through a gate—never! So she not only was devising new ways
to get through, she also had the good sense to practice her art only after
determining that no one was observing her, just like Andy Dufresne in
“The Shawshank Redemption.” Brilliant!

Sometimes it was obvious that Tiny Bryan was using brute force
because a gate was damaged, but most of the time we had no idea how
she did it. When I installed an especially strong and tall gate, we were
truly perplexed. Had she grown wings? My point is that with each new
gate, our dog had to devise one or more new ways to get through.

In both laboratory and field settings, notable examples of novel
problem-solving performances have been observed in many species,
including dogs (e.g., Bräuer, Bös, Call, & Tomasello, 2013); all non-human
primate species, to my knowledge, that have been studied (e.g., Avdagic,
Jensen, Altschul, & Terrace, 2013; Boinski, 1988; Burkart, Strasser, &
Foglia, 2009; Call & Tomasello, 1995; Capitanio & Mason, 2000; Fujita,
Sato, & Kuroshima, 2010; Inoue-Nakamura & Matsuzawa, 1997; Kappeler,
1987; Menzel, Savage-Rumbaugh, & Lawson, 1985; Santos, Ericson, &
Hauser, 1999; Tecwyn, Thorpe, & Chappell, 2012; Watson & Ward, 1996);
elephants (Hart, Hart, McCoy, & Sarath, 2001), who are even said to be
capable of exhibiting “insight” (Foerder, Galloway, Barthel, Moore, &
Reiss, 2011); rodents (Tokimoto & Okanoya, 2004; Wass et al., 2012);
marine mammals (e.g., Hille, Dehnhardt, & Mauck, 2006; Mann et al.,
2008; Scholtyssek, Kelber, Hanke, & Dehnhardt, 2013; Schusterman,
Thomas, & Wood, 1986); a wide variety of birds (e.g., Funk, 2002;
Liker & Bokony, 2009; Pepperberg, 2004; Webster & Lefebvre, 2001); and
even, to some extent, fish (Bshary, Wickler, & Fricke, 2002; Reader &
Laland, 2000).

377THOSE AMAZING ANIMALS

III. THE STRUGGLE FOR CREATIVITY



It is one of the great mysteries of comparative psychology that
birds of the corvid family, particularly crows and ravens, are especially
adept in this regard (e.g., Bird & Emery, 2009; Heinrich, 1995; Heinrich
& Bugnyar, 2005; Hunt, Corballis, & Gray, 2001; Taylor, Elliffe, Hunt, &
Gray, 2010; Taylor, Medina, et al., 2010; Von Bayern, Heathcote, Rutz, &
Kacelnik, 2009; Wimpenny, Weir, Clayton, Rutz, & Kacelnik, 2009).
It has even been argued that crows “understand their physical and
social worlds” in much the same way that apes do, suggesting that
convergent evolutionary processes are responsible for the extraordinary
intelligence of both (Emery & Clayton, 2004, p. 1903; cf. Kirsch,
Gűntűrkűn, & Rose, 2008).

In one of the more ambitious studies of this sort, seven New
Caledonian crows (Corvus moneduloides) were presented with various
tasks requiring the novel use of small sticks to retrieve food from one of
two types of containers (Wimpenny et al., 2009). The tasks were varied,
the authors stated, in order to determine the extent to which crows
“understand” (p. 1) what they are doing and to shed light on the
“cognitive mechanisms” (p. 1) underlying the performances. In what
was clearly the most spectacular of the performances—and indeed
the only one of its sort reported in the study—a crow dubbed “Betty”
(i) immediately tried to reach a long stick (20 cm) that was out of reach
in a transparent tube (this was spurious behavior, not relevant to the
solution), (ii) picked up (with its beak) a short stick (6 cm) that was
within reach, (iii) used the short stick to retrieve a medium-length stick
(10 cm) from a different transparent tube, (iv) briefly tried to retrieve
food from another transparent tube using the medium-length stick (also
spurious behavior, given that the stick was not long enough to reach
the food), (v) used the medium-length stick to retrieve the 20 cm stick
from the first tube, and then (vi) used the long stick to retrieve the
food. The entire performance, which was labeled “the first observation
of spontaneous three-tool sequential tool use in a non-human animal”
(p. 6), took about 53 s (cf. Epstein, 1985c, 1987; Epstein & Medalie, 1983).

The fact that Betty immediately tried to reach the long object upon
flying into the test area suggests a long history of experience with
respect to the sticks, and indeed, this was actually Betty’s fourth trial in
somewhat similar test situations, and she also had extensive experience
with various sticks and tubes in a “pre-testing procedure” (“a minimum
of 30 trials” plus “six familiarization trials” (p. 13)). The fact that Betty
tried to reach the food with the medium-length stick also indicates that
this was not a fully “reasoned” performance in the human sense.

Nevertheless, it was a novel performance that solved a problem, and
in that sense it could be called creative. It was also unique among the
other birds tested, meaning that Betty is very much like Sultan,
Köhler’s (1925) precocious chimpanzee that was able to solve the
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famous box-and-banana problem in an “insightful” fashion when five
other chimpanzees, standing nearby, could not. Unlike Betty, however,
Sultan was fairly inactive and looked pensive for several minutes before
suddenly solving the problem. That period of quiescence is important,
if only because it can be so easily interpreted in human terms.

Like other recent studies of this sort with corvids (e.g., Taylor, Elliffe,
et al., 2010), the Wimpenny et al. (2009) study was designed to shed
light on cognitive mechanisms, specifically by making predictions along
the following lines:

a. A lack of spurious actions would suggest that the birds were planning or
reasoning. But all of the birds tried at times to reach the food with the
shortest stick, and even Betty, in her most impressive performance,
reached at the wrong times for both the long stick and the food.
Collectively, the birds made spurious probes with the short stick on
at least 16 of 29 trials in the authors’ first experiment.

b. A correct choice of sticks would suggest that the birds were planning or
reasoning. However, generally speaking, “subjects did not appear to
choose in advance the tools they required” (p. 5).

c. When presented with the sticks but no food, a bird shouldn’t bother
manipulating the sticks, which would suggest that successful performances
were truly “goal-directed.” But when a bird that had learned to
retrieve sticks from tubes was confronted with this situation,
although it never probed the empty food-tube with the shortest tool,
it did use that tool “to extract further tools on all trials and used
these to probe into [the food-tube]” (p. 6). In a subsequent
procedure, “all subjects did insert an extracted tool into the (empty)
food-frame on at least one trial” (p. 9).

d. If birds without relevant experiences with sticks could solve the problem,
that would suggest they were capable of advanced reasoning abilities. But in
the authors’ first experiment, all three of the birds that lacked
experiences with sticks “failed in all tasks where tools had to be
extracted” (p. 6). In a second experiment, one bird “used a tool to
extract another tool on his very first trial” (p. 12), but it wasn’t able to
retrieve food with any tool. Moreover, one bird “frequently took the
extracted tools to other parts of the aviary, suggesting that, although
crows responded to some extent appropriately to the contingencies of
the task, they were motivated to extract tools per se” (p. 9).

Although the authors argued that the number of errors they
observed in some situations was less than one might expect by chance,
overall, they offered little evidence of any substantive cognitive activity
in their birds, and, indeed, they were forced to conclude that “we do
not implicate reasoning (or a lack of it) as an explanation for our crows’
behavior” (p. 12).
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Other researchers, reviving the old debate about behaviorism that
began more than a century ago (see King, 1930; Watson & McDougall,
1928), have taken various stands on this issue, some insisting that
problem-solving performances in animals demonstrate clear signs of
human-like cognitive activity (e.g., Taylor, Elliffe, et al., 2010), others
taking a more conservative stand (e.g., Shettleworth, 2009, 2010). This
debate has never yielded a winner and never will; it is pointless, in my
view (Epstein, 1984, 1996a, 2014).

ANIMAL ART

In judging the creativeness of animal behavior, we needn’t limit our-
selves to problem solving. Novel human behavior can be judged to be
creative, after all, if it has virtually any kind of value—esthetic (think
Michelangelo), economic (the first Apple desktop computer), or even
just bizarre (Lady Gaga). Non-human animals lack a linguistic commu-
nity capable of judging their behavior to be creative, but that doesn’t
mean humans can’t step up to fill the void. Oddly enough, even
pigeons can be trained to discriminate good human art from bad
human art (Watanabe, 2010). It should be a simple matter for us to
make similar discriminations regarding animal creativity.

Are there examples of novel animal behavior that humans might rea-
sonably judge to be creative? A YouTube video that has had nearly 10
million views shows an elephant named Paya, a resident at the Maesa
Elephant Camp in Chiang Mai, Thailand, painting a fairly simple but
beautiful image of an elephant holding a flower.1 Unfortunately, this
performance will not satisfy our definition of creative, because Paya
was painstakingly trained to paint this image over and over again every
day to entertain tourists, and he was also probably coached during the
making of the video.2

Other elephants, however, given more of a free trunk (so to speak),
have occasionally covered canvasses with images impressive enough to
draw large sums from human art collectors (Bourgeois, 2005; Suttle &
The, 1997). A 2012 exhibition at the University College London’s Grant
Museum of Zoology displayed paintings by elephants, gorillas, orangu-
tans, chimpanzees, and even a bowerbird which many people would con-
sider to be indistinguishable from comparable human art (Guerke, 2012).

Not every painting by a particularly talented elephant is praisewor-
thy, but the same can be said of the paintings of human artists. Years
ago, I had the pleasure of viewing Andrew Wyeth’s “Helga” exhibit at

1http://www.youtube.com/watch?v5He7Ge7Sogrk.

2http://urbanlegends.about.com/library/bl_elephant_painting.htm.
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a museum in Boston. This was one of the most unique art exhibits of its
day, because the collector who bought the completed paintings insisted
on buying and having the right to preserve and show more than 200
preliminary drawings and studies that preceded the finished works,
some so crude that a young child—or chimp—could have made them.
We are willing, in short, to judge someone creative if he or she behaves
creatively only occasionally. If we give the same latitude to animals, we
will almost certainly judge many animals to be creative.

GENERATIVITY THEORY

Whether novel animal behavior has value in the same sense that
novel human behavior has value is debatable, just as the significance of
computer-generated art and music is debatable, or even the signifi-
cance, for that matter, of any computer behavior that seems to mimic
human intelligence (Epstein, Roberts, & Beber, 2008; Turing, 1950). But
the fact that animals do new things is indisputable. Where does novel
behavior come from, and is it possible that the same basic processes are
responsible for the novel behavior of both animals and people?

In the early 1980s, I proposed a theory to try to explain the emer-
gence of novel behavior in multiple species. According to generativity
theory, (i) new behavior emerges as previously established repertoires
of behavior become interconnected over time, and (ii) the interconnec-
tion process is both orderly and predictable. Combinatorial theories of
creativity have been around for a long time (consider Hull, 1935;
Poincaré, 1946; Rothenberg, 1971); the main thing I added to the picture
was an assertion of orderliness, as well as a way of quantifying and
measuring this orderliness. Specifically, I speculated that multiple pro-
cesses operate simultaneously on the probabilities of multiple beha-
viors, and, by implication, on their underlying neurological systems.

This is a sensible and, in some respects, simple theory. It is also pre-
dictive and parsimonious. Most important for present purposes, genera-
tivity theory explains why novel behavior—a small portion of which
will inevitably have value in specific situations—is ubiquitous in the
animal kingdom. The orderly and rapid interconnection of repertoires
of behavior is adaptive; it is about as adaptive a process as nature could
possibly devise because it guarantees that all previously established
behaviors, whether learned or programmed by genes, will be available
to tackle new challenges as they arise moment to moment in time in the
environment. Generativity theory shows how this process works with-
out making any assumptions about speculative cognitive mechanisms—
or denying their existence.

381GENERATIVITY THEORY

III. THE STRUGGLE FOR CREATIVITY



The same mechanisms underlie the emergence of novel behavior in
both animals and people because novelty-yielding behavioral variability
has value, just as novelty-yielding genotypic and phenotypic variability
have value in evolution. Species survive and sometime diverge because
of phenotypic variants. The range of variability in traits yielded by sex-
ual reproduction is so large that genuinely new traits inevitably emerge
in every generation—a phenomenon that helps to protect a species
from extinction when environmental conditions change and that
ensures that superior traits and even superior species will ultimately tri-
umph over time. Similarly, novelty-yielding behavioral variability in an
individual organism helps to guarantee that that individual’s behavior
will be effective under changing conditions, occasionally even produc-
ing behavior so new that it can change the organism’s environment in
significant ways.

These two types of variability might even overlap. Genes might occa-
sionally produce individual organisms so creative that they find effec-
tive new ways to compete against other species for limited resources,
eventually dislodging those species from the gene pool.

Two ubiquitous situations in the natural environment assure that
behavioral competition occurs almost continuously. First, the real
world surrounds us constantly with multiple, novel, and vague stimuli
which set multiple behaviors in motion. Second, when behavior is
ineffective—which it is in small ways hundreds of times a day—a
process called “resurgence” occurs: previously established behaviors
that were effective under conditions similar to the current ones are
activated (Epstein, 1983, 1985b, 1996a; cf. Epstein & Skinner, 1980).
Generative processes thus assure not only that behavior will vary but
that it will vary in ways that are especially likely to be adaptive in the
current situation. In this sense the variability that occurs in individual
organisms is even more adaptive than the variability that drives the
evolution of species; the latter is blind, but the former guarantees
the emergence of new behavior that is specifically relevant to the prop-
erties of the new situation. Generativity theory also has immediate
practical value, because when you identify variables and parameters
that contribute to the emergence of novel behavior, you can manipulate
those variables and parameters for useful ends (Epstein, 1996b, 2000,
2011; Epstein, Kaminaka, Phan, & Uda, 2013; Epstein & Phan, 2012;
Epstein, Schmidt, & Warfel, 2008).

To explore the potential power of generative competition, I expressed
the theory in formal terms and modeled it with a computer algorithm.
Representing just four long-studied behavioral processes in a series of
equations I called “transformation functions” (Figure 13.1), I was able
to model a number of creative performances I had studied in laboratory
settings with both pigeons and people, such as the manner in which
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people solved Maier’s (1931) classic “two-string problem” (Figure 13.2).
Running simultaneously in a “state” algorithm, the transformation func-
tions generate a “probability profile,” in which overlapping probability
curves show how behavior changes over time, producing novel behavior
almost continuously as other behaviors become interconnected over
time (Figure 13.3). I also devised a way to show the orderliness in the
novel performance of a single subject using a graphical technique that
generates a “frequency profile.” The frequency profile yields overlap-
ping curves that look very much like probability curves (Figure 13.4).

This methodology proved effective in predicting novel performances
in both pigeons and people in laboratory performances. The differences
between the two species seem largely to be parametric. The general
principles—that new behavior emerges as old behaviors merge and that
multiple behavioral processes operate simultaneously on the probabili-
ties of different behaviors—seem valid for both species and perhaps for
many others as well.

The formal representation and quantification of the creative process
in individual organisms is no small feat, but with few exceptions the
existing literature on animal creativity and problem solving shows
little or no awareness of any of the main implications of generativity
theory and its supporting research. Instead researchers are (and I say
this respectfully) wasting their time debating about what animals
may or may not “understand” regarding their performances, as if that
information—were it even possible to determine with any degree of
confidence, which it is not—would add anything important to our
own “understanding” of the performances.

(1) Ex�nc�on: yn + 1 = yn– yn * ε
(2) Reinforcement: yn + 1 = yn + (1 –yn) * α
(3) Resurgence: for  λyy’ < 0  and  y’n – y’n –1 < 0 ,

yn + 1 = yn + (1 – yn) * (–λyy’) * y’n
(4) Automa�c for  λyy’ > 0  and  y’n – y’n –1 > 0 ,

Chaining: yn + 1 = yn + (1 –yn) * λyy’ * y’n

FIGURE 13.1 The transformation functions of generativity theory. According to
generativity theory, multiple behavioral processes operate simultaneously on the probabil-
ities of multiple behaviors. In one possible instantiation of the theory, four basic behav-
ioral processes are represented (above). yn is the probability of behavior y at cycle n of the
algorithm, y0n is the probability of behavior y0 at cycle n of the algorithm, ε is a constant
for extinction (it determines the rate at which the probability of behavior y decreases over
cycles of the algorithm), α is a constant for reinforcement (it determines the rate at which
the probability of behavior y increases over cycles of the algorithm as a result of certain
environmental events), and λyy0 is the constant of interaction between behaviors y and y0.

383GENERATIVITY THEORY

III. THE STRUGGLE FOR CREATIVITY



When you speculate about what an animal “understands” regarding
an arrangement of stimuli or the manner in which it solved a problem,
you are simply talking about more behavior. You are asking whether the
animal can not only solve the problem but can also state a principle or
visualize a causal flow diagram or perhaps even perform mathematical calcu-
lations. The problem here—which has existed as long as comparative
psychology has existed—is that as long as you can conceive of a way for the
animal to have solved the problem without engaging in these so-called “high-
level” cognitive manipulations, you must make the parsimonious assumption
that the animal is not doing so.

Even if we were able to show definitely that an animal had formu-
lated the (human) verbal equivalent of a formal principle, I have little
doubt that the processes giving rise to the emergence of such a

1 2 3 4 5

FIGURE 13.2 Maier’s (1931) Two-string problem. Subjects are instructed to tie the
two ends of the strings together, but they quickly learn that they can’t reach both strings
at once. They learn this by pulling one string toward the other and reaching. Most people
then try pulling the second string toward the first, which makes little sense. When pro-
vided with a long heavy object (#5 in inset), a subject is highly likely to use it to extend
his or her reach, but the object that is provided is not long enough to reach the other
string. When provided with a short heavy object (#1), a subject is much more likely to
solve the problem, which requires tying the object, short or tall, to one string and swing-
ing it, then pulling the other string toward the swinging string and catching it when it
comes near. Appropriately, the problem is sometimes called “the pendulum problem.”
Provided with a long object, if a subject is able to solve the problem at all, automatic
chaining is usually involved. The person ties the long object to the end of a string and
then pulls the object toward the second string; this is one way of using the object to extend
one’s reach. When that fails, the subject often lets go of the object, which causes the
attached string to swing in a pendulum motion. The solution follows rapidly. Objects of
intermediate lengths produce predictable outcomes according to those lengths.
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principle—again, this is just more behavior, after all—would be similar
if not identical to the processes that led to the emergence of the
problem-solving performance itself. In footnote 5 of an early paper I
published on the principle of resurgence, I explained how generative
processes—in particular, the process of resurgence itself—could account
for my formulation of the formal principle of resurgence itself (Epstein,
1985b, p. 151; also see Epstein, 1996a, p. 145). A statement of a relation-
ship among variables—in other words, “reasoning”—is, first and fore-
most, a statement; again, it is just more behavior, presumably amenable
to the same sort of analysis that can be applied to all behavior.

Without exception, all of the studies of animal problem solving or
creativity I have seen in recent years lend themselves to a rigorous

Pulls one string
to another

Object 1
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bi
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Ties object
to string

Swings

Reaches with object

Time (“Ticks”)

Connects strings

FIGURE 13.3 Probability profile for Maier’s (1931) two-string problem. A probability
profile generated by the transformation functions shown in Figure 13.1, generated for five
behaviors relevant to Maier’s (1931) two-string problem. The abscissa is labeled “ticks,”
which are cycles of the computer algorithm, each a scalable moment of unspecified dura-
tion. The profile was generated with parameters for a short object (#1 in Figure 13.2),
which generally produced rapid solutions to the problem and no irrelevant reaching. Note
that pulling one string toward the other decreases steadily in probability and that other
behaviors increase in probability in an orderly sequence. Tying the object to the string
makes swinging more likely, which, in turn, makes connecting the strings more likely.
The computer model that generates the curve uses discrete state methodology, running a
set of initial probabilities through all four equations to generate a new set of probabilities,
then running those through the equations again, and so on.
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analysis using the tools of generativity theory. Video recordings can be
examined frame by frame, coded, and represented by frequency pro-
files, which instantly reveal orderliness which is almost entirely invisi-
ble to the naked eye. Instead, researchers are still relying on crude
verbal descriptions of the performances, or, at most, rough tabulations
of “percentage correct” and other data aggregated across organisms or
trials. Problem situations, which by definition, are bounded in specific

Probability profile

Time
0

5

10

15

20

25

30(A)

(B)

P
ro

ba
bi

lit
y

B1

B2 B3

B4

S58

Frequency profile

0 202 404 606 808 1010 1212 1414 1616 1818 2020 2222 2424 2626 2828 3030 3232 3434 3636 3838

Time (0.1 s)

0

.02

.04

.06

.08

.10

.12

M
ov

in
g 

pr
op

or
tio

n

S58

B3

B4

B2B1

FIGURE 13.4 Predicting individual behavior moment to moment in time. (A) This
probability profile, produced by the transformation functions of the generativity model,
predicts the behavior of a human subject on a touch-screen task. The subject has been
instructed to move a spot across the screen into a goal area. Tapping three patches on the
screen (B1, B2, and B3) will move the spot in various directions and at varying speeds;
tapping a fourth patch (B4) has no effect. The model predicts that the subject will begin
tapping B1, then gradually shift to B2, then gradually shift to B3, with responses alternat-
ing among the three choices along the way (where the curves overlap). It also predicts
that toward the end of the session, the subject will begin tapping B4, even though doing
so has no effect. (B) This frequency profile shows actual data obtained from one subject
(S58) during a 5 min session. The pattern of responding is predicted well by the probabil-
ity profile, including the shift to B4.
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ways, can easily be represented in formal terms using transformation
functions, and those functions can then be used to model and predict
individual performances. In short, the orderliness in animal creativity
can be quantified and studied rigorously using advanced tools of the
natural sciences.

Whether generativity theory is correct in its particulars is beside the
point. The predictive power of this type of theory is so great that some
form of it almost certainly must be correct. Almost certainly, multiple
processes must be acting simultaneously on the probabilities of multiple
behaviors and their counterparts in the nervous system, and the net result
generates a wide range of behavior continuously in time—everything
from mundane grooming to profound “insight.”

Meanwhile, many researchers in psychology and biology who are
rightfully fascinated by some of the extraordinary human-like capabili-
ties of crows, chimpanzees, and other animals, are barking up the
wrong tree. Like the naturalists of the 1800s, they continue to anthropo-
morphize, insinuating that human-like performances by animals are
interesting only if an animal’s cognitive world is like a human’s.

Meanwhile, I wonder, as many have before me, why we continue to
bother speculating about the cognitive world of humans; I have long
seen this as a dilemma in which our consciousness interferes with our
scientific objectivity (Epstein, 1982, 2008).
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